The FHWA Travel Model Improvement Program Workshop over the Web

The Travel Model
Development Series:
Part I –
Travel Model Estimation

presented by Thomas Rossi Yasasvi Popuri Cambridge Systematics, Inc.

April 14, 2009

Webinar Outline

- Session 1: Introduction October 16, 2008
- Session 2: Data Set Preparation November 6, 2008
- Session 3: Estimation of Non-Logit Models December 11, 2008
- Session 4: Estimation of Logit Models February 10, 2009

Webinar Outline - Note Revisions! (continued)

- Session 5: Disaggregate and Aggregate Validation Procedures – March 12, 2009
- Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009
- Session 7: Highway and Transit Assignment Processes – May 7, 2009

3

Webinar Outline - Note Revisions! (continued)

- Session 8: Evaluation of Model Validation Results – June 9, 2009
- Session 9: Real Life Experiences in Model Development, Webinar Wrap-Up – July 16, 2009

Note on Today's Session 6

Session 6: Advanced Topics in Discrete Choice Models – April 14, 2009

- This is an optional session, requested by reviewers of the original webinar outline
- More detail, more math on logit models
- No homework
- Session 5 homework will be reviewed at the beginning of <u>Session 7</u>

5

Review: The Use of Logit Models in Transportation Planning

- Can be used to analyze any choice made by travelers with discrete alternatives
- Mode choice is the most common application for which logit models are used in transportation planning
- But there are many other choice processes for which logit models serve well

Review: The Multinomial Logit Model

P(1) =
$$\frac{\exp(v_1)}{\exp(v_1) + \exp(v_2) + \dots + \exp(v_n)}$$

Utility functions:

$$V_i = B_{0i} + B_{1i} X_{1i} + B_{2i} X_{2i} + \cdots + B_{ni} X_{ni}$$

where:

 B_{ki} = coefficient for variable X_{ki} for alternative i

X_{ki} = variable that explains choice for alternative i

7

Modeling Individuals Disaggregately

- The outputs of the logit models are probabilities for all alternatives
- In aggregate models, probabilities are treated as *shares*
- In disaggregate models, probabilities can be used to <u>simulate</u> outcomes

Disaggregate Models

- Each person's choices are simulated individually
- Each choice depends on previously made choices

g

Disaggregate Model Example (Home Based Work)

- 1. Trip production: Choose 0, 1, or 2 trips
- Then, for each trip:
- 2. Trip distribution: Choose attraction zone
- 3. Mode choice: Choose auto or transit

Then, create auto and transit trip tables...

4. Perform highway and transit assignment

Disaggregate Model Example (continued)

1. Trip production: MNL (3 alts.)

$$U_0 = 0$$

 $U_1 = B_{10} + B_{11}$ (adult) + B_{12} (worker) + B_{13} (high inc.) + B_{14} (med. Inc.) + B_{15} (male)

$$U_2 = B_{20} + B_{21}$$
 (adult) + B_{22} (worker) + B_{23} (high inc.) + B_{24} (med. Inc.) + B_{25} (male)

11

Disaggregate Model Example (continued)

Trip production outcome for person 1:

$$P(0) = 0.10$$

$$P(1) = 0.20$$

$$P(0) = 0.70$$

Draw a random number R (0-1):

If R = 0 - 0.10, person makes 0 work trips

If R = 0.10 - 0.30, person makes 1 work trip

If R = 0.30 - 1.00, person makes 2 work trips

Disaggregate Model Example (continued)

Then, for each work trip:

- 2. Run logit destination choice model, obtain probabilities, simulate outcome (attraction zone)
- 3. Run logit mode choice model, obtain probabilities, simulate outcome (mode)

After everyone has been simulated, we have a list of trips with origins, destinations, and modes.

13

Why Do This?

- Reduce aggregation error in models
- Incorporate more variables to explain travel behavior
- Get model results for population segments

Generic vs. Alternative Specific Variables

- Basic rule: If variable has same value for all alternatives, alternative-specific coefficients must be used AND coefficient for one alternative must be zero
- If variable has different values for different alternatives, generic specification can be used

15

Generic vs. Alternative Specific Variables: Example 1

Consider a mode choice model with 3 alts.:

Auto, transit-walk access, transit-auto access

$$\begin{aligned} & \mathsf{U_a} = \mathsf{B_{1a}} \; \mathsf{IVT_{ta}} + \mathsf{B_{2a}} \; (\mathsf{autos_a}) \\ & \mathsf{U_{tw}} = \mathsf{B_{0tw}} + \mathsf{B_{1tw}} \; \mathsf{IVT_{tw}} + \mathsf{B_{2tw}} \; (\mathsf{autos_{tw}}) + \mathsf{B_{3tw}} \; \mathsf{OVT} \\ & \mathsf{U_{ta}} = \mathsf{B_{0ta}} + \mathsf{B_{1ta}} \; \mathsf{IVT_{ta}} + \mathsf{B_{2ta}} \; (\mathsf{autos_{ta}}) + \mathsf{B_{3ta}} \; \mathsf{OVT} \end{aligned}$$

Generic vs. Alternative Specific Variables: Example 1 (continued)

In the survey data set:

$$\begin{split} IVT_a &= IVT_{tw} = IVT_{ta} \text{ for all observations?} \\ & \underline{\text{No}}, \text{ therefore IVT can have a generic coefficient} \\ & (B_{1a} = B_{1tw} = B_{1ta}) \\ \text{autos}_a &= \text{autos}_{tw} = \text{autos}_{ta} \text{ for all observations?} \\ & \underline{\text{Yes}}, \text{ therefore IVT cannot have a generic coefficient} \\ & (B_{2a} \neq B_{2tw} \neq B_{2ta}) \\ \text{AND, one of } B_{2a}, B_{2tw}, \text{ or } B_{2ta} \, \underline{\text{must}} = 0 \end{split}$$

17

Generic vs. Alternative Specific Variables: Ease of Interpretation

If there are generic variables in the model:

Interpreting model results easier if one alt. designated as "base alternative" for all generic variables (including the constant).

 $B_{ka} = 0$ for all generic variables X_k

If there are <u>only</u> generic variables in the model:

 $B_{ka} = 0$ for all variables X_k implies that...

 $V_a = 0$

Vehicle Availability Model Example Estimation Results

0	1	2	3	4+
-				4+
		0.1164 (2.1)	0.1164 (2.1)	0.2571 (2.1)
-	-	0.4915 (5.2)	1.474 (10.8)	2.139 (10.0)
-	-0.0458 (-2.9)	-0.1327 (-5.4)	-0.1717 (-4.4)	-0.2549 (-3.0)
-	1.130 (8.7)	2.497 (13.9)	2.995 (12.7)	3.242 (7.6)
-	-1.133 (-1.7)	-2.054 (-2.8)	-2.742 (-3.3)	-2.742 (-3.3)
-		-2.870 (-8.8)	-1.017 (-5.3)	-0.5181 (1.1)
-	0.164 (0.2)	-3.761 (-4.6)	-8.229 (-8.0)	-12.87 (6.8)
	ρ² w.r.t const	ants = 0.302		
	- - -	- 1.130 (8.7) 1.133 (-1.7) 0.164 (0.2)	- 1.130 (8.7) 2.497 (13.9) 1.133 (-1.7) -2.054 (-2.8) 	1.130 (8.7) 2.497 (13.9) 2.995 (12.7)1.133 (-1.7) -2.054 (-2.8) -2.742 (-3.3)2.870 (-8.8) -1.017 (-5.3) 0.164 (0.2) -3.761 (-4.6) -8.229 (-8.0)

Advanced Variable Specifications

- "Typical" mode choice model variables:
 - LOS: IVT, OVT (components), cost
 - Demographic (may be segmentation)
 - Zone type variables (e.g. CBD dummy, density)

Advanced Variable Specifications

- LOS variables:
 - Separate wait time up to X min, beyond X min
 - OVT/distance
 - % of transit IVT that is auto access
 - % of transit IVT that is local bus

21

Advanced Variable Specifications

- Demographic
 - Autos/worker, autos-workers segments
 (e.g. autos = 0, autos < workers, autos ≥ workers)
 - Consider nonlinear transformations (e.g. In (income))
 - "Missing" income
- Combined LOS/demographic
 - Cost/income or segmented by income level

Size Variables

- Example: Logit destination choice (zone alts.) number of attractions
 - $V_z = In (Attr_z) + B_1 f(travel time) + ...$
- Estimated size variable

```
V_z = In [(service emp) + exp(B_2) (retail emp) + exp(B_3) (other emp)] + B_1 f(travel time) + ...
```

23

More on Interpreting Model Estimation Results

The likelihood function

$$L(B) = P(c_1|B) P(c_2|B) ... P(c_n|B)$$

Log-likelihood

$$LL(B) = In P(c_1|B) + In P(c_2|B) + ... + In P(c_n|B)$$

Likelihood Function Example

Consider a binary logit model, auto vs. bus

Let $V_m = a (IVT_m)$

Consider a 3 trip sample:

Trip	Choice	IVT _a	IVT _B
1	Α	50	30
2	Α	10	20
3	В	30	40

25

Likelihood Function Example (continued)

Choice probabilities:

1: P(A) = 1 / [1 + exp(-20a)]

2: P(A) = 1 / [1 + exp(10a)]

3: P(B) = 1 / [1 + exp(-10a)]

Likelihood Function Example (continued)

Likelihood function

Log-likelihood

LL = -
$$ln[1 + exp(-20a)] - ln[1 + exp(10a)]$$

- $ln[1 + exp(-10a)]$

27

Use of the Likelihood Function

• Rho-squared w.r.t. zero

$$- \rho^2 = 1 - LL(B)/LL(0)$$

• Rho-squared w.r.t. constants

$$- \rho^2 = 1 - LL(B)/LL(C)$$

The Likelihood Ratio Test

- Estimate model with all variables included. Likelihood = L1
- Drop variables and re-estimate.
 Likelihood = Let log L2
- 3. Let LR = 2 (log L1 log L2). LR > 0.
- 4. LR is χ^2 distributed with k d.o.f.
- 5. If LR > χ^2 , variables should be retained

29

Application Programming for Logit Models

- "Older" modeling software was limited in applying logit models
- Modelers often wrote stand-alone programs (FORTRAN, usually)
- Many of these legacy programs still used

Application Programming for Logit Models (continued)

- It is preferable to develop scripts in modeling software:
 - To input/output skims, trip tables, etc. smoothly
 - For ease in updating
 - For transparency
 - For quality control
 - For vendor support

31

Application Programming for Logit Models (continued)

- Updating older programs can be difficult
 - Commenting may be lacking
 - Input/output routines might need to be updated for newer modeling software
 - Finding the right compiler can be problematic

Application Programming for Logit Models (continued)

Some hints

- Keep estimated/calibrated parameters in a separate file
- Keep other items that might be updated (e.g. auto operating cost) in separate file
- Be careful with nesting coefficients
- During debugging, have program produce interim outputs (can be commented out later)